Considering nearest neighbor constraints of quantum circuits at the reversible circuit level
نویسندگان
چکیده
Since many underlying quantum algorithms include a Boolean component, synthesis of the respective circuits is often conducted by a two-stage procedure: First, a reversible circuit realizing the Boolean component is generated. Afterwards, this circuit is mapped into a respective quantum gate cascade. In addition, recent physical accomplishments have led to further issues to be considered, e.g. nearest neighbor constraints. However, due to the lack of proper metrics, these constraints usually have been addressed at the quantum circuit level only. In this paper, we present an approach that allows the consideration of nearest neighbor constraints already at the reversible circuit level. For this purpose, a recently introduced gate library is assumed for which a proper metric is proposed. By means of an optimization approach, the applicability of the proposed scheme is illustrated.
منابع مشابه
Towards a Cost Metric for Nearest Neighbor Constraints in Reversible Circuits
This work in progress report proposes a new metric for estimating nearest neighbor cost at the reversible circuit level. This is in contrast to existing literature where nearest neighbor constraints are usually considered at the quantum circuit level. In order to define the metric, investigations on a state-of-the-art reversible to quantum mapping scheme have been conducted. From the retrieved ...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملFault Tolerant Reversible QCA Design using TMR and Fault Detecting by a Comparator Circuit
Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...
متن کاملFault Tolerant Reversible QCA Design using TMR and Fault Detecting by a Comparator Circuit
Quantum-dot Cellular Automata (QCA) is an emerging and promising technology that provides significant improvements over CMOS. Recently QCA has been advocated as an applicant for implementing reversible circuits. However QCA, like other Nanotechnologies, suffers from a high fault rate. The main purpose of this paper is to develop a fault tolerant model of QCA circuits by redundancy in hardware a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Quantum Information Processing
دوره 13 شماره
صفحات -
تاریخ انتشار 2014